Quantum driving and work.
نویسندگان
چکیده
As quantum systems become more experimentally accessible, we are forced to reconsider the notions of control and work to fully account for quantum effects. To this end, we identify the work injected into a quantum system during a general quantum-mechanical driving protocol and quantify the relevant heat flows. The known results that are applicable in the limit of a classical drive are shown to emerge from our equations as a special case. Using the established framework, we show that the Bochkov-Kuzovlev identity for the exclusive work distribution is modified in a nontrivial way by the accumulation of system-drive correlations resulting from quantum back action. Our results accentuate the conceptual and discernible differences between a fully quantum-mechanical and classical driving protocols of quantum systems.
منابع مشابه
Lattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کاملA review of quantum thermodynamics
In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 5 شماره
صفحات -
تاریخ انتشار 2014